
Chapter 12 Contributions and Future Research

Software engineering researchers are investigating approaches to automate

software design methods that were previously developed for use by designers. Most

investigations to date propose approaches to automate the Structured Design method

described by Yourdon and Constantine. These investigations are motivated primarily by

the fact that Structured Design is a well-known method, is used by many practicing

software designers, and is supported by numerous computer-aided software engineering

(CASE) tools. Unfortunately, the structured design method leads only to sequential

designs. A larger class of software systems, including concurrent and real-time designs,

is not addressed by Structured Design.

12.1 Contributions

The research described in this dissertation proposes an approach leading to

automated generation of concurrent designs for real-time software, given a data/control

flow diagram model of the problem. The approach consists of two main parts: 1) a

means of analyzing a data/control flow diagram and interpreting elements on the diagram

as semantic concepts in a specification meta-model and 2) a means of generating

concurrent designs from a specification meta-model. This dissertation contains a

complete specification of all components of the approach. This dissertation also

describes the implementation and application of a prototype COncurrent Designer’s

Assistant, or CODA, that is built directly from the specifications contained in this

dissertation. The detailed contributions of the research described in this dissertation are

as follows.

A specification meta-model is defined that enables semi-automated inference of the

existence of semantic concepts from a data/control flow diagram that is described

using RTSA notation. This specification meta-model begins with ideas expressed

by Gomaa when describing COBRA, a method which applies RTSA notation in a

restricted form to model the functional and behavioral characteristics of a software

system. This dissertation provides a concept hierarchy, a set of classification rules,

and a set of concept axioms that extend and formalize the ideas contained in

COBRA.

A design meta-model is defined that enables concurrent designs to be represented

and reasoned about. The design meta-model allows a design to be viewed as an

object-oriented database that can be queried interactively by a designer. The design

meta-model also enables automated assessment of the completeness of a design,

with respect to the input specification, and automatic checking of generated designs

for consistency with the design meta-model. The design meta-model includes

bi-directional traceability between a concurrent design and the data/control flow

diagram from which the design is generated. The design meta-model provides for

design histories to be associated with each component in a concurrent design. The

dissertation also illustrates and describes a means of representing diagrammatically

397

most of the entities and relationships included in the design meta-model. In

addition, a means is identified to model some salient characteristics of operating

system services, hardware configurations, and design parameters that can influence

design decisions.

The design heuristics embodied in the CODARTS design method are specified as

expert-system rules that reason from the specification and design meta-models.

The rules are grouped together into decision-making processes allocated to each of

four phases in the CODARTS design method. In the case of conflicting rules,

preferred rule orderings are specified. Consultation with the designer is limited to

cases where additional insight can improve a design decision and where an

experienced designer is available.

The specification and design meta-models, the decision-making processes and

related control knowledge, and the design-decision rules are implemented in a

prototype COncurrent Designer’s Assistant, or CODA. CODA is applied to

generate, semi-automatically, concurrent designs for four real-time problems. For

each problem, the design produced by CODA is compared against an existing

design provided by an experienced designer. The effectiveness of the approach is

evaluated.

12.2 Potential Applications

The results from this research might be applied to assist designers to create

concurrent designs. In one application, a tool such as CODA might be embedded into a

398

computer-aided software engineering (CASE) system. Most CASE systems enable a

designer to enter flow diagrams and structure charts, or other representations of a

software design; however, the process of creating the software design from the flow

diagrams must be performed by a human designer, outside the CASE system, without

automated assistance. Where a tool such as CODA is available, a designer could enter a

data/control flow diagram into a CASE system and then invoke automated assistance to

generate a concurrent design. Such automation can capture and maintain traceability

between elements on the data/control flow diagram and components of the concurrent

design. In addition, such automation can capture and report design decisions and

rationale.

In a second application, a tool such as CODA might be applied as a training aid to

help develop the skills and understanding of software designers with respect to two,

complementary software design methods, COBRA and CODARTS. Problems could be

assigned to students who would then use COBRA to develop a data/control flow diagram

and go on to construct a concurrent design using the CODARTS heuristics. The

data/control flow diagram could then be entered into a tool such as CODA. The

concurrent design generated by CODA could be compared against the student-generated

design. Since CODA provides the specific decisions made and the rationale for those

decisions, a student could learn in two ways. First, where the tool takes a more correct

decision than the student, the student can identify and begin to understand her

misconceptions about the CODARTS design method. Second, where the tool produces a

399

poor design, the student can begin to understand the relationships between data/control

flow diagrams and the heuristics included in the CODARTS design method.

12.3 Future Research

The research described in this dissertation leads to an automated representation of

a concurrent design for real-time software. When generating the design, certain aspects

of the intended target environment are considered, where appropriate. For example, the

message queuing and software signaling services available in the target operating system

are considered when defining task interfaces. Larger issues, such as the number of

processors available in the target hardware configuration and the availability of various

forms of shared memory, are not considered by the current research. In addition, various

algorithms can be identified for assigning tasks in a design among processors in the

hardware architecture and for assigning priorities to multiple tasks on a single processor.

The current research does not use this information. All of these factors are included

within the current research so that later research can address automated configuration of

concurrent designs for specific hardware architectures.

Another area of future research involves evaluation of designs. The current

research captures information about the frequency of task executions and about the

maximum rate at which external stimuli arrive at the system. This information is not

used within this dissertation but is intended to facilitate future research regarding

automated evaluation of the performance of concurrent designs. One area for

investigation is automated analysis of the schedulability of a concurrent design using

400

rate-monotonic scheduling theory. This is a critical issue for real-time designs because a

real-time system must meet its timing requirements event under worst-case system

loading. A second area for investigation is dynamic simulation of concurrent designs.

Dynamic simulation can be used to assess the average performance characteristics of a

design under various loads, can be used to monitor the dynamic behavior of the design

for undesirable properties, and can also be used to identify logical flaws in the design.

A third area for additional research is the generation of code skeletons from the

internal representation of a concurrent design. The approach proposed in this dissertation

leads to an automated representation for the entities and relationships composing a

concurrent design. Perhaps a means can be found to generate code skeletons for the tasks

and modules contained within the automated representation of the design.

A fourth area for additional research is automated analysis of state-transition

diagrams to identify mutual exclusion among enabled functions and to identify

locked-state events on a data/control flow diagram. Perhaps additional specification

mechanisms could be proposed and investigated to show relationships among various

external event flows and data flows. With this additional information, the ability to

automatically analyze a data/control flow diagram for mutual exclusion and for

locked-state events might be improved.

A fifth area for future research relates to the creation of data/control flow

diagrams. At present, construction of a data/control flow diagram is left to a human

designer. Researchers are currently investigating methods for extracting structured

401

information from natural language requirements specifications. A gap exists between the

requirements expressed as natural language and the requirements organized in a

structured form such as data/control flow diagrams, state-transition diagrams, and data

dictionaries. Today this gap must be filled by a human designer with little automated

assistance. Future research might aim to provide automated assistance for constructing

flow graphs from natural language requirements.

A sixth area for future research concerns the creation of a repository for design

knowledge. As additional design heuristics are identified and existing heuristics are

refined, an automated representation of the associated design rules can be specified,

encoded, and maintained. In this way, an automated design assistant could increase its

scope of knowledge and application over time. Additionally, partial designs for various

applications might be stored in a repository and then serve as starting points for the

generation of variants of the design when new target environments are required. This

reuse of designs might prove particularly useful should the approach be extended to

include the configuration and evaluation of designs.

A seventh area for future research involves extending the approach specified in

this dissertation so that designs can be generated for distributed applications. The method

proposed in this dissertation accommodates distributed applications by explicitly

representing interfaces to external subsystems. A more comprehensive approach to

distributed designs might prove useful, especially with the increasing importance of

networks and client/server architectures.

402

